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Abstract

This paper applies He’s variational iteration method to determine the periodic solutions of oscillators in a u1/3 force.

With the procedure, the excellent approximate frequencies and the corresponding periodic solutions can easily be obtained.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In nonlinear analysis, perturbation methods are well-established tools to study diverse aspects of nonlinear
problems. Surveys of the early literature with numerous references, and useful bibliographies, have been given
by Nayfeh [1], Mickens [2], Jordan and Smith [3] and Hagedorn [4]. However, the use of perturbation theory
in many important practical problems is invalid, or it simply breaks down for parameters beyond a certain
specified range. Therefore, new analytical techniques should be developed to overcome these shortcomings.
Such a new technique should work over a large range of parameters and yield accurate analytical approximate
solutions beyond the coverage and ability of the classical perturbation methods.

For example, variational methods have been, and continue to be, accepted tools for nonlinear oscillators,
for example, D’Acunto applied He’s variational method [5,6] to various nonlinear oscillators. He [7] himself
applied a new variational method to a kind of general nonlinear oscillators. He’s variational iteration method
[8], is successfully and easily used to solve some class of nonlinear problems. For linear problems, its exact
solution can be obtained by only one iteration step due to the fact that the Lagrange multiplier can be exactly
identified. Relatively comprehensive survey on the method and its applications can be found in Refs. [9–18],
monograph [19] and the references therein.

There also exists a wide range of literature dealing with the approximate determination of periodic solutions
for nonlinear problems by using a mixture of methodologies [20–32].

The purpose of this paper is the determination of the periodic solutions to nonlinear oscillator equations
for which the elastic restoring forces are non-polynomial functions of the displacement by applying He’s
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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variational iteration method. This class of equations represents a new class of nonlinear oscillating systems,
which were first studied in detail by Mickens [33].

2. He’s variational iteration method

Currently, we will study the properties of the periodic solutions to certain nonlinear oscillators by applying
He’s variational iteration method for which the elastic restoring forces are non-polynomial functions of the
displacement. In particular, this term is chosen to be

f ðxÞ ¼ �x1=3. (1)

As it is well known that the classical perturbation methods [1–4] give uniformly valid asymptotic expansions
for the periodic solutions of weakly nonlinear oscillators, in general, the technique is not applicable in case of
strongly nonlinear terms or elastic restoring forces are non-polynomial functions. Therefore, the work
reported here applies He’s variational iteration method which also works for strongly nonlinear systems as
well as the nonlinear systems with the elastic restoring forces are non-polynomial functions of displacement.

Now, to illustrate the basic concept of He’s variational iteration method, we consider the following general
nonlinear differential equation given in the form:

LuðtÞ þNuðtÞ ¼ gðtÞ, (2)

where L is a linear operator, N is a nonlinear operator and g(t) is a known analytical function. We can
construct a correction functional according to the variational method as

unþ1ðtÞ ¼ unðtÞ þ

Z t

0

lðLunðxÞ þN ~unðxÞ � gðxÞÞdx, (3)

where l is a general Lagrange multiplier, which can be identified optimally via variational theory, the subscript
n denotes the nth approximation, and ~un is considered as a restricted variation, namely d ~un ¼ 0 [8–10].

In the following examples, we will illustrate the usefulness and effectiveness of the proposed technique.

Example 1. Now, consider the following nonlinear oscillator which was first studied in detail by Mickens [33]:

u00 þ u1=3 ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0. (4)

By applying harmonic balance method and using the first-order approximate solution

u0 ’ A cos ot (5)

to Eq. (1), Mickens determined angular frequency, o, as

o ¼
4

3A2

� �1=6

� 1:04912A�1=3. (6)

Mickens [34] also used the second-order harmonic balance approximation to the periodic solution of Eq. (1)
and determined o as

o ¼
1

3

4

� �
þ

27

4

� �
z̄þ

243

2

� �
z̄2

� �1=6 1þ z̄

A

� �1=3

, (7)

where z̄ is one of the solution having the smallest absolute magnitude of the polynomial equation

1701ð Þz3 � 27ð Þz2 þ 51ð Þzþ 1 ¼ 0.

Comparing Eq. (3) with Eq. (4), it is clearly seen that the second harmonic balance approximation only
provides small corrections to the periodic solution obtained in the first approximation and is negligible. This is
the expected result.

More recently, He [19], and Xu [35], determined o as in Eq. (3) by applying homotopy perturbation method
and bookkeeping parameter method [19], respectively.
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Now, to apply variational iteration method, we write correction functional of Eq. (4) as

unþ1ðtÞ ¼ unðtÞ þ
1

o

Z t

0

sin oðs� tÞ u00nðsÞ þ u1=3
n ðsÞ

n o
ds. (8)

We try the input of starting function as

u0 ¼ A cos ot (9)

and we have the first iteration as

u1ðtÞ ¼ A cos otþ
1

o

Z t

0

sin oðs� tÞ �Ao2 cos otþ ðA cos osÞ1=3
n o

ds. (10)

Fourier series representation is needed for (cosot)1/3. It has been calculated [36] and is given by

ðcos otÞ1=3 ¼
X1
n¼0

a2nþ1 cosð2nþ 1Þot, (11)

a2nþ1 ¼
3Gð7

3
Þ

24=3Gðnþ 5
3
ÞGð2

3
� nÞ

,

with a1 ¼ 1.159595266963929. Therefore, the first several terms are

ðcos otÞ1=3 ¼ a1 cos ot�
cos 3ot

5
þ

cos 5ot

10
�

7 cos 7ot

110
þ

cos 9ot

22
�

13 cos 11ot

374
þ . . .

� �
. (12)

Substituting Eq. (12) into Eq. (10) yields

u1ðtÞ ¼ A cos otþ
1

o

Z t

0

sin oðs� tÞ �Ao2 cos osþ A1=3a1 cos os�
cos 3os

5
þ � � �

� �� �
ds ¼ 0. (13)

The requirement of no secular term gives

�Ao2 þ A1=3a1 ¼ 0 (14)

and the angular frequency determined as

o ¼
1:0768

A1=3
. (15)

We, therefore, obtain the following approximated period

T ¼
2pA1=3

1:0768
¼ 5:835A1=3. (16)

For purpose of comparison, Mickens’ first-order harmonic balance method [33], He’s homotpy perturbation
solution with first-order approximation [19] and Xu’s solution [35] by utilizing bookkeeping method [19] give
the frequency as A1/3o ¼ 1.0491. Mickens’ second-order harmonic balance [34] gives the calculated value of
the frequency as A1/3o ¼ 1.0704. Özis- and Yıldırım’s modified Lindstedt–Poincaré method solution [37]
agrees exactly with the present solution (15). The exact value [38] of the frequency read A1/3oex ¼ 1.070451.
Hence, the exact period is

Tex ¼
2pA1=3

1:070451
¼ 5:86966A1=3. (17)

It can be easily shown that the maximal relative error is less than 0.59%.
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T. Özis-, A. Yıldırım / Journal of Sound and Vibration 306 (2007) 372–376 375
Example 2. The second equation to be studied is a modified version of the van der Pol equation [39], i.e.,

u00 þ u1=3 ¼ �ð1� u2Þu0; uð0Þ ¼ A; u0ð0Þ ¼ 0. (18)

Its correction functional can be constructed as follows:

unþ1ðtÞ ¼ unðtÞ þ
1

o

Z t

0

sin oðs� tÞ unðsÞ þ u1=3
n ðsÞ � �ð1� u2

nðsÞu
0

nðsÞ
n o

ds. (19)

If we seek the input of starting function, u0 ¼ A cosot, we have

u1ðtÞ ¼ A cos otþ
1

o

Z t

0

sinðs� tÞ �Ao2 cos osþ ðA cos osÞ1=3 � �ð1� ðA cos osÞ2Þð�AoÞ sin os
n o

ds.

(20)

Replacing Fourier expansion of (cosot)1/3 from Eq. (12), it follows that Eq. (20) becomes

u1ðtÞ ¼ A cos otþ
1

o

Z t

0

sinðs� tÞ �Ao2 cos osþ A1=3a1 cos os�
cos os

5
þ � � �

h in

þ�Ao 1�
A2

4

� �
sin os�

�A3o
4

sin 3os

�
ds ¼ 0. ð21Þ

The requirement of no secular term gives

1�
A2

4
¼ 0 and � Ao2 þ A1=3a1 ¼ 0 (22)

and therefore, we obtain,

A ¼ 2 and o ¼
1:0768

A1=3
¼

1:0768

21=3
¼ 0:8547. (23)

We, therefore, obtain the following approximated period:

T ¼
2p

0:8547
, (24)

which agrees exactly with Özis- and Yıldırım’s [37] solution and Mickens’ solution [39].

3. Conclusion

In summary, we have demonstrated the applicability of the method for solving nonlinear problems with
fractional order with the help of some concrete examples. The method is extremely simple, easy to use and is
very accurate for entire solution domain. Also, the method is a powerful tool to search for approximate
solutions of various linear/nonlinear problems with integral/fractional order and/or strong nonlinearity. To
our knowledge, the method can also be extended to wide range of problems such as (singular) nonlinear
boundary value problems, delay differential equations, autonomous systems and other problems of
mathematical physics. We think that the method have great potential which still needs further development.
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